STEM for All

Science, technology, engineering, and mathematics (STEM) careers are a growing segment of the U.S. job market; however, the United States currently lacks the talent to fill a portion of these positions. Integrating STEM into the K–12 curriculum is imperative if the United States wants to cultivate its own talent. This course, STEM for All, outlines the value of integrating STEM into the curriculum at each grade level and offers examples of STEM integration in the classroom and through cocurricular opportunities.

This course emphasizes also that STEM integration needs to move beyond the math and science classrooms and students who seek it out. Educators need to make sure STEM concepts are accessible to all students, including those who are presently underrepresented in STEM-based careers. STEM components need to be a part of curriculum and assessments to ensure success outside the classroom.

STEM competency is essential to the continued growth of our nation; therefore, it should be encouraged and accessible to all students in all arenas.

Course Objectives

By the end of this course, you will be able to

Module 1

- Explore science, technology, engineering, and mathematics education in K–12 education.
- Compare the presence of a STEM education to its absence.
- Describe the four elements that advance STEM learning.

Module 2

- Develop ways to make STEM more accessible and achievable in demographic groups that are underrepresented in STEM education and careers.
- Analyze barriers to STEM education for underrepresented groups and design programs and ways to overcome the barriers.

Module 3

- Design curricula that incorporate STEM education.
- Apply components of a rich STEM curriculum to lesson design.

Module 4

- Integrate curriculum components that engage students in STEM education by sparking interest and incorporating relevance.
- Design a unit that is engaging and interesting to students in an effort to attract them to STEM.

Module 5

- Gauge STEM learning using authentic assessments.
- Design assessments that diagnose and measure student learning of STEM.

Module 6

- Compare career paths to STEM fundamentals.
- Design career exploration programs for students.

Course Syllabus

4

Module 1	An Interdisciplinary Approach
	Module Welcome
	Reading: Promoting STEM in the K–12 Classroom
	Video: A STEM Education: Tools to Change the World
	Reading: AE—Promoting STEM Careers Starts in the K–12 Classroom
	Reading: EL—Making STEM Real
	Knowledge Check
	Application: Incorporating STEM in All Classrooms
	Post-Module Reflection
Module 2	Making STEM Accessible to Underrepresented Groups
	Module Welcome
	Reading: Addressing the STEM Gap
	Reading: EU—Closing the STEM Gender Gap
	 Video: National Action Council for Minorities in Engineering (NACME)— Diversity in STEM
	 Reading: Imaginative Programs + Caring Mentors = Sparking STEM Interest in Underserved Youth
	Video: Advancing All Students
	Knowledge Check
	Application: Determining STEM Interest and Overcoming Barriers
	Post-Module Reflection
Module 3	Designing a STEM-Oriented Curriculum
	Module Welcome
	Reading: STEM Units that Engage Students
	Reading: EU—Teaching and Learning Resources for STEM Education
	Optional Video: Teaching Channel Presents: STEM in Action
	Reading: AE—Tips for Engaging Students in Scientific Thinking
	Video: Using Real-World Concepts: STEM Instruction
	Knowledge Check
	Application: Analyze a STEM Unit
	Post-Module Reflection

Г

Module 4	Student-Centered STEM Activities
	Module Welcome
	Reading: Moving Beyond Lessons
	Reading: EL—The Art and Craft of Science
	Reading: EL—Managing Messy Learning
	Video: WISE4: Engaging Science Students via Inquiry and Simulations
	Knowledge Check
	Application: Expand STEM by Using Project Management
	Post-Module Reflection
Module 5	Authentic STEM Assessments
	Module Welcome
	Reading: Assessing Critical Thinking and Problem Solving
	Reading: AE—Preparing Creative and Critical Thinkers
	Reading: EL—Practicing What We Preach in Designing Authentic Assessments
	Multimedia: Authentic Assessment versus Traditional Assessment
	Knowledge Check
	Application: Design STEM Assessments
	Post-Module Reflection
Module 6	From the Classroom to Career
	Module Welcome
	Reading: From Students to Professionals
	Video: Case Studies in K-8 Science Education
	Reading: EL—Research Says/Don't Overlook Middle-Skill Jobs
	Knowledge Check
	Application: Create a "Mock" STEM Program
	Post-Module Reflection

Resources

- ASCD. (n.d.). Advancing all students. Retrieved January 7, 2014, from <u>http://streaming.ascd.org/</u> watch/view-all/5115612110001/the-innovators-stem-your-school
- ASCD. (n.d.). Using real-world concepts: STEM instruction. Retrieved January 7, 2014, from http://streaming.ascd.org/watch/view-all/5115612110001/the-innovators-stem-your-school
- ASCD. (2011). Case studies in K–8 science education. *ASCD Express, 6*(24) Retrieved January 15, 2014, from <u>www.ascd.org/ascd-express/vol6/624-video.aspx</u>
- Boss, S. (2009, September). Managing messy learning. *Educational Leadership*, 67(1). Retrieved from www.ascd.org/publications/educational-leadership/sept09/vol67/num01/Managing-<u>Messy-Learning.aspx</u>
- Geocaris, C., & Green, R. (2013, July 18). Tips for engaging students in scientific thinking. ASCD *Express, 8*(21). Retrieved from <u>www.ascd.org/ascd-express/vol8/821-geocaris.aspx</u>
- Goodwin, B. (2012, April). Research says/Don't overlook middle-skilled jobs. *Educational Leadership*, 69(7). Retrieved from <u>www.ascd.org/publications/educational_leadership/apr12/vol69/</u> <u>num07/Don%27t_Overlook_Middle-Skill_Jobs.aspx</u>
- Hoachlander, G., & Yanofsky, D. (2011, March). Making STEM real. *Educational Leadership, 68*(6). Retrieved January 6, 2014, from <u>www.ascd.org/publications/educational-leadership/mar11/</u> vol68/num06/Making-STEM-Real.aspx
- Link, E. (2013, September 3). Imaginative programs + caring mentors = sparking STEM interest in underserved youth. [Weblog Comment]. Retrieved from <u>www.symantec.com/connect/blogs/</u> <u>imaginative-programs-caring-mentors-sparking-stem-interest-underserved-youth</u>
- Metz, S. (2011). Promoting STEM careers starts in the K–12 classroom. ASCD Express, 6(24). Retrieved January 6, 2013, from <u>www.ascd.org/ascd-express/vol6/624-metz.aspx</u>
- NRCScienceGamesSims. (2009, September 30). WISE4: Engaging science students via inquiry and simulations. Retrieved January 7, 2014, from www.youtube.com/watch?v=1KfuH3fu7-Q
- Root-Bernstein, M., & Root-Bernstein, R. (2013, February). The art and craft of science. *Educational Leadership*, *70*(5). Retrieved from <u>www.ascd.org/publications/educational-leadership/</u> <u>feb13/vol70/num05/The-Art-and-Craft-of-Science.aspx</u>

- Sloan, W. (2012, February). Teaching and learning resources for STEM education. *Education Update 54*(2). Retrieved from <u>www.ascd.org/publications/newsletters/education-update/feb12/</u> <u>vol54/num02/Teaching-and-Learning-Resources-for-STEM-Education.aspx</u>
- Teaching Channel (2013). Teaching channel presents: STEM in action. Retrieved January 7, 2014, from <u>www.teachingchannel.org/videos/tch-presents-stem-curriculum</u>
- The White House. (2010, September 16). A STEM education: Tools to change the world. Retrieved January 7, 2014, from www.youtube.com/watch?v=biWQZlUl-vE
- Treffinger, D. (2008). Preparing creative and critical thinkers. *ASCD Express*, 65(9). Retrieved from http://www.ascd.org/publications/educational-leadership/summer08/vol65/num09/Preparing-Creative-and-Critical-Thinkers.aspx
- Ullman, E. (2010, March). Closing the STEM gender gap. *Education Update, 52*(3). Retrieved from http://www.ascd.org/publications/newsletters/education-update/mar10/vol52/num03/Closing-the-STEM-Gender-Gap.aspx
- WebsEdgeEducation. (2012, January 11). National Action Council for Minorities in Engineering (NACME)—Diversity in STEM. Retrieved January 7, 2014, from <u>www.youtube.com/</u> <u>watch?v=kVNihlx3Rog</u>
- Wiggins, G. (1996, December/1997, January). Practicing what we preach in designing authentic assessments. *Educational Leadership*, *54*(4). Retrieved from <u>www.ascd.org/publications/edu-</u> <u>cational-leadership/dec96/vol54/num04/Practicing-What-We-Preach-in-Designing-Authentic-</u> <u>Assessments.aspx</u>